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Aliasing in pseudospectral transform calculations was reported to be insignificant for 
two-dimensional flow in Cartesian geometry by Fox and Orszag [J. Computational Physics 
11 (1973), 6121. In this paper, we show that aliasing is also unimportant in spherical geometry 
using surface-harmonics as the spectral expansion functions. We also comment on some 
technical properties associated with spectral methods for the primitive variable formulation 
of flow in spherical geometry. To maintain stability, a special truncation procedure for the 
modal coefficients has to be applied every time step. The truncation procedure is generalized 
to three-dimensional primitive variable formulations. The use of a vector pole condition, 
discussed by Orszag [Monthly Weather Rev. 102 (1974), 561, can simplify the implementa- 
tion of the truncation procedure. With correct truncation, the full spectral method is an 
energy conservative scheme while the pseudospectral method is not. 

1. INTRoOUCTI~N 

We will present results pertaining to spectral methods for numerical calculation of 
two-dimensional flows on the surface of a sphere using surface-harmonics as the 
expansion functions. In this paper, we focus on the primitive variable formulation of 
the flow equations, because these equations are easily generalizable to three-dimen- 
sions. 

In Sec. 2, we define the equations of motion, and describe the calculation procedures. 
In Sec. 3, we discuss truncation problems and vector pole conditions. For the vorticity- 
streamfunction formulation of two-dimensional flow, simple truncation of spectral 
series at every time step presents no instabilities. However, for the primitive variable 
formulation, Orszag [2] pointed out the existence of the vector pole conditions relating 
the dependent variables. These pole conditions must be maintained by the numerical 
scheme in order to avoid numerical instabilities. 

The truncation procedures suggested by the vector pole conditions are equally 
applicable to pseudospectral simulations. Energy conservation properties and aliasing 
errors of the pseudospectral calculations will be discussed in Sec. 4. The results of 
accuracy and timing tests of the pseudospectral method will be presented there. 
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2. EQUATIONS OF MOTION AND THE CALCULATION PROCEDURES 

The equations of motion for an incompressible flow field, u, in a rotating coordinate 
frame are 

and 

8U _ = u x(V x u)-2Q x u-vP+vv"u at 

v.u=o 

(1) 

(2) 

where 9 is the rate of angular rotation, v is kinematic viscosity and P is the pressure 
head. For two-dimensional flow on the surface of a sphere, u =-y u&O, $) is + urn 
(0, $4 4 > where the angles 19 and $ refer to latitude and longitude respectively. The 
flow field can also be described by the vorticity, Q, = (V,.,+ x u), and streamfunction, 
#. The velocity field is expressible as V,,, x (-C/J&.). 

The variables 5, $ and P are scalar variables, meaning that their values are indepen- 
dent of the coordinate frame. Scalars, such as #I, are expanded as 

where Ynm is the surface-harmonic of degree n and order m. The surface harmonic 
Ynm is defined in terms of the associated Legendre polynomial, Pn"'(cos 8), as 

(4) 

where b,, = [(2n + l)(n - m)!]l/z [4r(n + m)!]-liz. 
The vector components us and ug change sign when the pole is crossed. They are 

expansible as 
u V l4@ = ~ sin 8 and u6 = 7 sm 9 

where lJ and V are scalars. We would like to write the equations of motion in terms 
of U and V. Substituting (5) into (2), the continuity equations becomes 

au 1 av --.~yv= 
a cos e sm2 0 a$ 

o 
’ 

Substituting (5) into (l), the momentum equations become 

au 2P -= 
at sin2 8 ~ a cos e -t vi-t 2~~~~ev -t vvw 

and 
2V 2P _= -_- 
at 84 

UC - 2ikos eu+ pv+ 2~0~ et] 

(6) 

(7) 

(8) 
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where 
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Since U, V, P and < are scalars, they can all be expanded similar to Eq. 3 with u,, , 
vn?n , Pm 9 and iAm as the coefficients of expansion respectively. 

Transform methods to efficiently implement spectral methods for streamfunction 
formulation of the equations of motion are discussed by Orszag [2]. For the primitive 
variable equations, the transform method is nearly the same. U, V and 5 are obtained 
at the grid points, (tIj , &J, from the coefficients of surface harmonics, u,, , v,, and 
IJ nm respectively, using Legendre transform in 0 and Fourier transform in 4. Let 

U’ = vg + 29 cos lg, (9) 
and 

v’=-u~-29cose~. (10) 

U’ and V’ are transformed into modal using Gaussian quadrature in 6’ and Fourier 
transform in 4. The pressure, P, conteracts any divergent flow produced by the 
convective and rotational terms. The calculation of P uses this fact. Substituting U’ 
into (7) and V’ into (8), ignoring the dissipative terms, and taking the divergence of 
the resultant equations, we get 

C2P = g-+$&g (11) 

The solution of P in terms of surface harmonic coefficients, prim , can be solved. P is 
then substituted into (7) and (8). The equivalent forms of Eqs. (7) and (8), in terms 
of the surface harmonic coefficients with leapfrog time differencing as an example, are 

+ (I2 + 2)(n -t m + l)(h + 3)-1Pn+l,nr 

+ (n - m>(l - n)@ - 11-l pn-1,m - 4 + 1) dm (12) 
t+At t-At 

vnnl - vnm , 
2 dt = c,,,, - W,, - vn(n + 1) $&& 

+ 2v [g$- n+m+1 
i:-l,hL + 2n + 3 i:+lm] 3 (13a) 

or 

where 

B,,(n) = -n(n - m + 1)(2n + I)-’ and B,,(n) = (n + l)(n + m)(2n f 1))‘. 

[The results, presented in Sec. 4, actually used the 3-cycle method of Lorentz 131.1 
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To summarize, the calculation procedure follows the steps outlined from Eqs. (9) to 
(13), along with the simplifying identity that <,, = -in@ + 1) m-l u,, , which is 
obtained using u = -(3$/a+) and 1; = Vz$. Th e integration for one time step is 
complete except for spectral truncation and the application of pole conditions. 

3. TRUNCATION AND POLE CONDITIONS 

For a full spectral simulation of the vorticity-streamfunction equations, the modes 
to be retained are those with / m I < n S N. For the primitive variable formulation, 
setting u,, = v,, = 0 for n > N and m > N will lead to incorrect results because 
the condition V . u = 0 is violated. The correct procedure is to set 

llNrn = 0 

DN-l,rrr =’ -iBnp(N - 2) m-l u~-~,~,~ (14a-c) 

V Nm = -i&&N - 1) m-l uN-l,m 

Note that the even (odd) n modes of u,, are coupled to the odd (even) n modes of 
v,,, . This is true for all flows in spherical geometry. The details of the derivation of 
the relationship at the pole, 

uBnL - -i sign(m) cos 6u,“$ at 8 = 0 and 7r (1% b) 

is in Orszag [2]. The superscript m denotes the coefficient of mth mode of the varia- 
tion in 4. The alternative forms of Eq. 15a, b in terms of the modal coefficients u,, 
and v,, are 

and 

where 

g - b,,Pnm(cOs 0) sin-“’ 02”m! at 0 = 0. nnz - 

Since a plynomial expression of P,m(cos 0) is 

U6b) 

(17) 
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At 6’ = 0, 

sinm BP,“(cos 8) = (n + m)! [2%z!(n - WI)!]-’ (18) 

Therefore, g,, = [(2n + l)(n + m)!/(n - WZ)!]~/~. It can be shown that Eqs. (14a-c) 
satisfy the vector pole condition. 

In three-dimensions, the velocity field can be described by a horizontally non- 
divergent component V,,, x (- $&.). a horizontally divergent component, V,,, 01, and 
a radial component, U, , (Morse and Feshback [5]). 

u = u,i, + V,.,~ + v*,* x (-@A (19) 

where 01, # and u, are expansible as scalars. u automatically satisfies the vector pole 
condition. The use of the vector pole condition can simplify the truncation procedure. 

Before truncation, the relationship between U and V are 

UN-1.m = -im*N-l.m - &,W - 2) aN-2.m + GN-1.m 

UN,m = --B,,W - 1) aN-1.m + CN,, 

UN-1,m. = lmaN-l,rn - &AN - 2) #N-2.m + dN-l,m 

V N.m = --B,,W - 1) #N-1.m + 6N,m 

(20a-d) 

The terms with “A” are not written out in detail because those terms will be dropped. 
Here aN-l,m. and c1N-2.nz can be obtained by the method similar to those described by 
Eqs. (45)-(49) in Eliasen, Machenhauer and Rasmussen [4] or by 

( -!- A &J 
r2 ar ) + n.m 

= (V%),, = -n(n + 1) OLnln 

The remaining unknowns, #N--l,,,, and #N-2,m can be obtained by calculating the 
vorticity or simply by applying Eqs. (15a-b). 

Vector pole conditions can be also applied to the truncation of the shallow water 
equations. The results, 

and 

-1 
[ 

N-l N-l 

Uf,+,, = - 
gNm 

c u,, g,, + i 1 vnmgnm Wa) 
n=jml a=lml I 
n odd n even 

1 N-l 

UN,,, = - gNm vnm gnnl + i C unmgnm 1 Wb) VZ.=pb/ 
n odd 1E even 

for odd N, are equivalent to Eqs. (36)-(37) of Eliasen, Machenhauer and Rasmussen 
r41. 
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4. PSEUDOSPECTRAL METHOD 

Orszag [2] pointed out that 4N grid points in 4 and 3N/2 grid points in 0 at chosen 
locations are needed for full spectral simulation. The minimum requirements are 2N 
points in $, and N points in 0. Thus, Legendre transforms and Gaussian quadrature 
for the pseudospectral method should cost only l/3 as much as that for the full 
spectral method. The actual cost of the complete pseudospectral simulation is about 
43 % of the cost of the full spectral simulation. 

The increase in computational speed is a trade off for the appearance of a small 
amount of aliasing errors in the pseudospectral calculations. If the nonlinear inter- 
actions of a full spectral simulation generated a term of the form, P,.n”(cos 0) eim* for 
0 < N < r < 2N, or P,‘(cos 0) eiT8 for 0 < N < r < 2N and m = r - 2N, then 
this term will appear as 

5 a,,P,“(cos B)eim* (23) 
n=lml 

in the pseudospectral calculations. 
Aliasing errors, however, do not destroy the proper relationships between ZJ and V, 

except in the last two modes of II for each m, if the pressure is implemented correctly, 
meaning that the velocity field at the end of one time step calculation remains sole- 
noidal. Eqs. (14a-c) should also be used to truncate U and V for the pseudospectral 
calculations. For a given m, the terms of the surface harmonic expansions of U and V 
that are dropped during truncation are denoted by @ and pm respectively. Their 
expressions are 

@” = CNmbNnPNW (244 
and 

pm = ~~-l,mb~-l,mP;~l + %mbN,Pjy” (24b) 

Let us examine the energy conservation properties associated with the truncation 
procedure without dissipation. 

u:+‘~ = ugt + ( (u,&~ + sin 8 & - i& At ) 

u, -u,+ 
N-At _ 

( 
MY + &t$ + a,) At 

The scheme is called energy conservative if 

is zero. At the beginning of each time step, @,,,, = 0 for n > N and 1 m 1 > N and 

(28) 
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For pseudospectral method with (@) and (@) described by Eqs. (24a, b), [,,z i: 0 
for some 1 m I < n < N and / m 1 < N. Therefore, pseudospectral method is not an 
energy conservative scheme. On the other hand, [,, of the full spectral method is zero 
for/ml <n\(NandImj <N,andisnonzeroforn>NandIm/ >N.Thus,the 
full spectral method is an energy conservative scheme. 

We have tested the accuracy of the pseudospectral method compared to the full 
spectral method in evolution from identical initial conditions. The energy spectrum 
of the initial flow is chosen to be 

where 
E(n) = (n/1.5) exp(--n/1.5) 

E(n) = l/2 E n(n + 1) I km 12. 
I??[=0 

(2% 

The details of the initial flow are generated randomly. For each (n, m) a pair of random 
numbers between -1 and 1 is scaled by (29) and assigned to #,, . The errors of the 

104 
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FIG. 1. Enstrophy dissipation spectra, s(n), for (a) pseudospectral and (b) full spectral method 
at t = 2.88 for Rossby number c = 1, Ekman number E = .005 and rotation. The scales of (a) 
and (b) are on the right and left sides of the graph respectively. 
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calculations tend to show more clearly in high-order derivatives. The entrophy 
dissipation rate, 7, given by 

7 = 24 v x (V x a”> = fI yod (30) 

ib) 
FIG. 2. (a) and (b) are the contour plots of V x (V x u) for pseudospectral and full spectral 

method respectively. 
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where 
y(n) = 2l@n + I)2 E(n), 

is especially suitable for these comparisons. 
Fig. 1 is the plot of (2v)-l T( n ) f or v = .005, Sz = 1 and N = 32 at t = 2.88, when 

turbulence is well established. (2~)1 q(n) emphasizes the highest wave numbers. We 
do not notice any difference until n = 24. Figs. 2a, b are contour plots of V x 
(V x u) at t = 2.88 for pseudospectral and full spectral method respectively. The 
differences are small. The pseudospectral method is as accurate as the full spectral 
method for these flows. This agrees with the results in Cartesian geometry with 
Fourier series expansion reported by Fox and Orzsag [I 1. The results here does not 
imply that pseudospectral method with other types of expansions is always as accurate 
as the full spectral method. 

4. CONCLUSION 

We have studied the transform pseudospectral method for two-dimensional flow 
on the surface of a sphere. We found that the scheme is very accurate and fast despite 
the presence of aliasing errors and loss of energy conservation properties when using 
surface-harmonics as the spectral expansion function. 

The appropriate truncation of modal coefficients of primitive variables for incom- 
pressible flow was discussed. The existence of the vector pole condition provide an 
efficient method for the implementation of the truncation procedure. 
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